Exam. Code : 206602
Subject Code : 8478

## M.Sc. (Bioinformatics) Semester--II

## BASIC MATHEMATICS

Paper-BI-523
Time Allowed- 3 Hours]
[ Maximum Marks-75
Note :- Questior No. 1 from Section A is compulsory. Attempin 1 fire questions from Section B, selecting one question from each unit.

$$
\text { SFCIION-A } \quad 1.5 \times 10=15
$$

1. (a) Define absolute alue function. Represent it graphically in the domain $[-1,1]$.
(b) Find real numbers $x$ and $v$ such that:

$$
3 x+2 \text { iy }-i x+5 y=7+5 i
$$

(c) If $f(x)=x^{2}-5 x+6$, find $i^{\prime}(A)$, where :

$$
A=\left[\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right]
$$

(d) Find the vector $\overrightarrow{\mathrm{PQ}}$ if $\mathrm{P}(1,2,3)$ and $\mathrm{Q}(2,3,-7)$. Also find length of the vector $\overrightarrow{P Q}$.
(e) Find the derivate of $f(x)=x^{3}+3 x-\frac{1}{x}+7$ at $x=2$.
(f) The motion of a particle moving in a straight line is given by $s=t^{2}+2 t+3$. Find its velocity and acceleration at the end of 3 seconds.
(g) Evaluate $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$.
(h) Evaluate $\int\left(\sqrt{x}+\frac{1}{x}+7\right) d x$.
(i) Find the iatio in which the join of $(-3,2)$ and $(4,6)$ is cut by $X$-axis.
(j) Find the equation of the line passing through $(1,1)$ and parallel $t$, the line $2 x-3 y+5=0$.

## SECTION--b

UNIT-I
2. (a) If $\mathrm{A}=\{1,2,3,4,5\}, \mathrm{B}=\{1, ?, 3,4\}, \mathrm{C}=$ $\{3,4,5\}$, determine $(A \cap B) \cup C$ and $(A \cup B) \cap C$.
(b) Which of the following relations are functions? Give reasons. If it is a function, determit. its domain and range :
(i) $\{(2,1),(3,1),(5,2)\}$
(ii) $\{(0,0),(1,1),(1,-1),(4,2),(4,-2)\} .8$
3. (a) Write $\frac{3+4 i}{2-4 i}$ in the form $x+i y$, where $x$ and $y$ are real.
(b) Find the conjugate and modulus of $\frac{i \sqrt{-9}+7 i}{1+\sqrt{-1}}$.

6

## UNIT-III

4. (a) If $\mathrm{A}=\left[\begin{array}{ll}3 & 1 \\ 7 & 0\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}4 & 0 \\ 2 & 5\end{array}\right]$, verify $(\mathrm{AB})^{-1}=$ $\mathrm{B}^{-1} \mathrm{~A}^{-1}$.
(b) Prove that $\left|\begin{array}{ccc}a & b & c \\ a-i & j-c & c-a \\ b+c & \dot{-} a & a+b\end{array}\right|=a^{3}+b^{3}+c^{3}-3 a b c$.
5. (a) Find the value of a for which the vectors:
$3 \vec{i}+2 \vec{j}+9 \vec{k}$ and $\vec{i}+a \vec{j}+j \vec{k}$ are
(i) parallel (ii) perpendicular.
(b) If $\vec{a}=\vec{i}+\vec{j}+\vec{k}, \vec{b}=\vec{i}-\vec{j}+\vec{k}, \vec{c}=\vec{i}+2 \vec{j}-\vec{k}$, find $(\vec{a} \times \vec{b}) \cdot \vec{c}$.

## UNIT-III

6. (a) Find the interval in which the function $f(x)=$ $x^{2}-2 x$ is increasing.
(b) The sum of two numbers is 24 . Find the numbers so that their product is maximum
7. (a) If $z=x^{4} \log \left(\frac{y}{x}\right)$, find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.
(b) Find the maximum value of $\frac{\log x}{x}$ in $(2, \infty) \cdot 6$ UNIT--IV
8. (a) Firi the $20^{\text {th }}$ term of the series :

$$
\begin{equation*}
2 \times 4+4 \times 6+6 \times 8+\ldots \tag{6}
\end{equation*}
$$

(b) Evaluate $\int_{i}^{4}=\operatorname{con}^{2} x d x$.
9. (a) Find $\int \frac{2 x^{2}+x}{x-1} d$.
(b) Find the area of the regi $n$ brounded by the curves $y^{2}=4 x$ and $y=8 x$.

6

## UNIT--V

10. (a) Find the centroid of the triangle winse vertices are $(0,0),(3,0)$ and $(0,4)$.
(b) Find the equation of the diameter of the circle $x^{2}+y^{2}-6 x+2 y=0$ which passes throu oुh the origin.
11. (a) Find the equation of the parabola whose focus is $(5,2)$ and directrix is $x-1=0$.
(b) Find the equation of the sphere with centre ( $1,-1,1$ ) and radius equal to radius of the sphere $2 x^{2}+2 y^{2}+2 z^{2}-2 x+4 y-6 z=1$.

## 7103(2416)/QFV-49540

4

